18,253 research outputs found

    Quantum Monte Carlo Calculations of A6A\leq6 Nuclei

    Full text link
    The energies of 3H^{3}H, 3He^{3}He, and 4He^{4}He ground states, the 32{\frac{3}{2}}^{-} and 12{\frac{1}{2}}^{-} scattering states of 5He^{5}He, the ground states of 6He^{6}He, 6Li^{6}Li, and 6Be^{6}Be and the 3+3^{+} and 0+0^{+} excited states of 6Li^{6}Li have been accurately calculated with the Green's function Monte Carlo method using realistic models of two- and three-nucleon interactions. The splitting of the A=3A=3 isospin T=12T=\frac{1}{2} and A=6A=6 isospin T=1T=1, Jπ=0+J^{\pi} = 0^{+} multiplets is also studied. The observed energies and radii are generally well reproduced, however, some definite differences between theory and experiment can be identified.Comment: 12 pages, 1 figur

    Numerical computation of real or complex elliptic integrals

    Full text link
    Algorithms for numerical computation of symmetric elliptic integrals of all three kinds are improved in several ways and extended to complex values of the variables (with some restrictions in the case of the integral of the third kind). Numerical check values, consistency checks, and relations to Legendre's integrals and Bulirsch's integrals are included

    Elastic and inelastic breakup of deuterons with energy below 100 MeV

    Full text link
    We present calculations of deuteron elastic and inelastic breakup cross sections and angular distributions at deuteron energies below 100 MeV obtained using the post-form DWBA approximation. The elastic breakup cross section was extensively studied in the past. Very few calculations of inelastic breakup have been performed, however. We also analyze the angular momentum - energy distributions of the cross section for formation of the compound nucleus after inelastic breakup.Comment: 7 page

    The Coulomb Sum and Proton-Proton Correlations in Few-Body Nuclei

    Full text link
    In simple models of the nuclear charge operator, measurements of the Coulomb sum and the charge form factor of a nucleus directly determine the proton-proton correlations. We examine experimental results obtained for few-body nuclei at Bates and Saclay using models of the charge operator that include both one- and two-body terms. Previous analyses using one-body terms only have failed to reproduce experimental results. However, we find that the same operators which have been used to successfully describe the charge form factors also produce substantial agreement with measurements of the Coulomb sum.Comment: 11 pages, Revtex version 3.0 with 3 Postscript figures appended, ANL preprint PHY-7473-TH-9

    Tensor Forces and the Ground-State Structure of Nuclei

    Get PDF
    Two-nucleon momentum distributions are calculated for the ground states of nuclei with mass number A8A\leq 8, using variational Monte Carlo wave functions derived from a realistic Hamiltonian with two- and three-nucleon potentials. The momentum distribution of npnp pairs is found to be much larger than that of pppp pairs for values of the relative momentum in the range (300--600) MeV/c and vanishing total momentum. This order of magnitude difference is seen in all nuclei considered and has a universal character originating from the tensor components present in any realistic nucleon-nucleon potential. The correlations induced by the tensor force strongly influence the structure of npnp pairs, which are predominantly in deuteron-like states, while they are ineffective for pppp pairs, which are mostly in 1^1S0_0 states. These features should be easily observable in two-nucleon knock-out processes, such as A(e,enp)A(e,e^\prime np) and A(e,epp)A(e,e^\prime pp).Comment: 4 pages including 3 figure

    Dependence of two-nucleon momentum densities on total pair momentum

    Full text link
    Two-nucleon momentum distributions are calculated for the ground states of 3He and 4He as a function of the nucleons' relative and total momenta. We use variational Monte Carlo wave functions derived from a realistic Hamiltonian with two- and three-nucleon potentials. The momentum distribution of pp pairs is found to be much smaller than that of pn pairs for values of the relative momentum in the range (300--500) MeV/c and vanishing total momentum. However, as the total momentum increases to 400 MeV/c, the ratio of pp to pn pairs in this relative momentum range grows and approaches the limit 1/2 for 3He and 1/4 for 4He, corresponding to the ratio of pp to pn pairs in these nuclei. This behavior should be easily observable in two-nucleon knock-out processes, such as A(e,e'pN).Comment: 3 pages, 3 figure

    Statistical multifragmentation model with discretized energy and the generalized Fermi breakup. I. Formulation of the model

    Full text link
    The Generalized Fermi Breakup recently demonstrated to be formally equivalent to the Statistical Multifragmentation Model, if the contribution of excited states are included in the state densities of the former, is implemented. Since this treatment requires the application of the Statistical Multifragmentation Model repeatedly on the hot fragments until they have decayed to their ground states, it becomes extremely computational demanding, making its application to the systems of interest extremely difficult. Based on exact recursion formulae previously developed by Chase and Mekjian to calculate the statistical weights very efficiently, we present an implementation which is efficient enough to allow it to be applied to large systems at high excitation energies. Comparison with the GEMINI++ sequential decay code shows that the predictions obtained with our treatment are fairly similar to those obtained with this more traditional model.Comment: 8 pages, 6 figure
    corecore